Existence of three weak solutions for a class of discrete problems driven by p-Laplacian operator
نویسندگان
چکیده
منابع مشابه
Existence of three solutions for a class of quasilinear elliptic systems involving the $p(x)$-Laplace operator
The aim of this paper is to obtain three weak solutions for the Dirichlet quasilinear elliptic systems on a bonded domain. Our technical approach is based on the general three critical points theorem obtained by Ricceri.
متن کاملExistence results of infinitely many solutions for a class of p(x)-biharmonic problems
The existence of infinitely many weak solutions for a Navier doubly eigenvalue boundary value problem involving the $p(x)$-biharmonic operator is established. In our main result, under an appropriate oscillating behavior of the nonlinearity and suitable assumptions on the variable exponent, a sequence of pairwise distinct solutions is obtained. Furthermore, some applications are pointed out.
متن کاملExistence of Three Positive Solutions for m-Point Discrete Boundary Value Problems with p-Laplacian
We consider the multi-point discrete boundary value problem with one-dimensional p-Laplacian operator Δ φp Δu t − 1 q t f t, u t ,Δu t 0, t ∈ {1, . . . , n − 1} subject to the boundary conditions: u 0 0, u n ∑m−2 i 1 aiu ξi , where φp s |s|p−2s, p > 1, ξi ∈ {2, . . . , n − 2} with 1 < ξ1 < · · · < ξm−2 < n − 1 and ai ∈ 0, 1 , 0 < ∑m−2 i 1 ai < 1. Using a new fixed point theorem due to Avery and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Fixed Point Theory
سال: 2021
ISSN: ['1583-5022', '2066-9208']
DOI: https://doi.org/10.24193/fpt-ro.2021.1.16